设为首页 - 加入收藏 绵阳站长网 (http://www.0816zz.com)- 国内知名站长资讯网站,提供最新最全的站长资讯,创业经验,网站建设等!
热搜: 小米 技术 发布 中国
当前位置: 首页 > 综合聚焦 > 资源网站 > 空间 > 正文

Jvm内部缓存选型?一篇文章为你解答疑惑

发布时间:2019-09-25 22:27 所属栏目:[空间] 来源:青峰科技
导读:原生Java 简单的在HashMap的链式法增加新的引用形成一个链表,即是一个HashMap又是一个链表,这样输出即有序,也可以根据访问来动态调整顺序,达到FIFO或者LRU的特点。 使用ConcurrentHashMap作为缓存,没有淘汰功能或者手动淘汰。但是寻找效率较高,而且

Jvm内部缓存选型?一篇文章为你解答疑惑

原生Java

简单的在HashMap的链式法增加新的引用形成一个链表,即是一个HashMap又是一个链表,这样输出即有序,也可以根据访问来动态调整顺序,达到FIFO或者LRU的特点。

使用ConcurrentHashMap作为缓存,没有淘汰功能或者手动淘汰。但是寻找效率较高,而且线程安全

可以明显看出这个存在的问题,线程不安全,需要额外加锁,功能结构单一,没有过期时间容易存在内存泄露

Guava

因为LinkedHashMap存在的问题,所以大神们在此基础上造出了Guava

既然HashMap线程不安全,那么就使用CurrentHashMap(类似不完全是),为了实现过期那么就给数据加上时间戳标志,为了实现写后过期,读后过期,这两种配置,就使用了多条队列分别代表读和写

EHCHCHED

  1. Ehcache支持持久化到本地磁盘,Guava不可以;
  2. Ehcache有现成的集群解决方案,Guava没有。不过个人感觉比较鸡肋,对JVM级别的缓存来讲太重了
  3. Ehcache jar包庞大,Guava Cache只是Guava jar包中的工具之一,而且后者远远小于Ehcache;
  4. 两种缓存当缓存过期或者没有命中的时候都可以通过load接口重载数据,调用方式略有不同。两者的主要区别是Ehcache的缓存load的时候,允许用户返回null,而Guava Cache则不允许返回为null,因为Guava Cache是根据value的值是否为null来判断是否需要load,所以不允许返回为null,但是使用的时候可以使用空对象替换。不允许返回null是一个很好的考虑;
  5. Ehcache有内存占用大小统计,Guava Cache没有,需要自己开发;
  6. Ehcache在put缓存的时候,对K、V都做了包装,对GC有一定影响。

Caffeine

Caffeine是Spring 5默认支持的Cache,可见Spring对它的看重,那么Spring为什么喜新厌旧的抛弃Guava而追求Caffeine呢?

缓存的淘汰策略是为了预测哪些数据在短期内最可能被再次用到,从而提升缓存的命中率。LRU由于实现简单、高效的运行时表现以及在常规的使用场景下有不错的命中率,或许是目前最佳的实现途径。但 LRU 通过历史数据来预测未来是局限的,它会认为最后到来的数据是最可能被再次访问的,从而给与它最高的优先级。这样就意味着淘汰真正热点数据,为了解决这个问题业界运用一些数据结构上的改进巧妙的解决这个问题。

下面的内容是转载的一篇译文,如果需要查看译文原文,请点击这里,英语好的同学也可以直接查看英文原作。

缓存是提升性能的通用方法,现在大多数的缓存实现都使用了经典的技术。这篇文章中,我们会发掘Caffeine中的现代的实现方法。Caffeine是一个开源的Java缓存库,它能提供高命中率和出色的并发能力。期望读者们能被这些想法激发,进而将它们应用到任何你喜欢的编程语言中。

驱逐策略

缓存的驱逐策略是为了预测哪些数据在短期内最可能被再次用到,从而提升缓存的命中率。由于简洁的实现、高效的运行时表现以及在常规的使用场景下有不错的命中率,LRU(Least Recently Used)策略或许是最流行的驱逐策略。但LRU通过历史数据来预测未来是局限的,它会认为最后到来的数据是最可能被再次访问的,从而给与它最高的优先级。

现代缓存扩展了对历史数据的使用,结合就近程度(recency)和访问频次(frequency)来更好的预测数据。其中一种保留历史信息的方式是使用popularity sketch(一种压缩、概率性的数据结构)来从一大堆访问事件中定位频繁的访问者。可以参考CountMin Sketch算法,它由计数矩阵和多个哈希方法实现。发生一次读取时,矩阵中每行对应的计数器增加计数,估算频率时,取数据对应是所有行中计数的最小值。这个方法让我们从空间、效率、以及适配矩阵的长宽引起的哈希碰撞的错误率上做权衡。

Window TinyLFU(W-TinyLFU)算法将sketch作为过滤器,当新来的数据比要驱逐的数据高频时,这个数据才会被缓存接纳。这个许可窗口给予每个数据项积累热度的机会,而不是立即过滤掉。这避免了持续的未命中,特别是在突然流量暴涨的的场景中,一些短暂的重复流量就不会被长期保留。为了刷新历史数据,一个时间衰减进程被周期性或增量的执行,给所有计数器减半。

对于长期保留的数据,W-TinyLFU使用了分段LRU(Segmented LRU,缩写SLRU)策略。起初,一个数据项存储被存储在试用段(probationary segment)中,在后续被访问到时,它会被提升到保护段(protected segment)中(保护段占总容量的80%)。保护段满后,有的数据会被淘汰回试用段,这也可能级联的触发试用段的淘汰。这套机制确保了访问间隔小的热数据被保存下来,而被重复访问少的冷数据则被回收。

如图中数据库和搜索场景的结果展示,通过考虑就近程度和频率能大大提升LRU的表现。一些高级的策略,像ARC,LIRS和W-TinyLFU都提供了接近最理想的命中率。想看更多的场景测试,请查看相应的论文,也可以在使用simulator来测试自己的场景。

过期策略

过期的实现里,往往每个数据项拥有不同的过期时间。因为容量的限制,过期后数据需要被懒淘汰,否则这些已过期的脏数据会污染到整个缓存。一般缓存中会启用专有的清扫线程周期性的遍历清理缓存。这个策略相比在每次读写操作时按照过期时间排序的优先队列来清理过期缓存要好,因为后台线程隐藏了的过期数据清除的时间开销。

鉴于大多数场景里不同数据项使用的都是固定的过期时长,Caffien采用了统一过期时间的方式。这个限制让用O(1)的有序队列组织数据成为可能。针对数据的写后过期,维护了一个写入顺序队列,针对读后过期,维护了一个读取顺序队列。缓存能复用驱逐策略下的队列以及下面将要介绍的并发机制,让过期的数据项在缓存的维护阶段被抛弃掉。

并发

由于在大多数的缓存策略中,数据的读取都会伴随对缓存状态的写操作,并发的缓存读取被视为一个难点问题。传统的解决方式是用同步锁。这可以通过将缓存的数据划成多个分区来进行锁拆分优化。不幸的是热点数据所持有的锁会比其他数据更常的被占有,在这种场景下锁拆分的性能提升也就没那么好了。当单个锁的竞争成为瓶颈后,接下来的经典的优化方式是只更新单个数据的元数据信息,以及使用随机采样、基于FIFO的驱逐策略来减少数据操作。这些策略会带来高性能的读和低性能的写,同时在选择驱逐对象时也比较困难。

【免责声明】本站内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。

网友评论
推荐文章